ENTEC Vectra® E130i Celanese Corporation - Liquid Crystal Polymer

Thursday, January 23, 2025

General Information					
Product Description					
30% glass fiber, excellent flow, high te	emperature capability				
General					
Material Status	Commercial: Active				
Availability	 Africa & Middle East Asia Pacific	EuropeLatin America	North America		
Filler / Reinforcement	Glass Fiber, 30% Filler by Weight				
Additive	Flame Retardant	Heat Stabilizer	UV Stabilizer		
Features	Flame RetardantHeat Stabilized	High FlowUV Stabilized			
Automotive Specifications	BOSCH N28 BN35-X001 Color: HYUNDAI MS941-03 Type P-2 Natural & Black FRV0				
Forms	Pellets				
Processing Method	 Injection Molding 	 Lead Free Soldering 			
Part Marking Code (ISO 11469)	 >LCP-GF30 				
Resin ID (ISO 1043)	• LCP-GF30				
ASTM & ISO Properties ¹					

A311	a iso Fropencies		
Physical	Nominal Value	Unit	Test Method
Density	1.61	g/cm³	ISO 1183
Apparent (Bulk) Density	0.71	g/cm³	ISO 60
Molding Shrinkage			ISO 294-4
Across Flow	0.40	%	
Flow	0.10	%	
Water Absorption			ISO 62
Equilibrium, 73°F, 0.0787 in, 50% RH	0.030	%	
Mechanical	Nominal Value	Unit	Test Method
Tensile Modulus	2.32E+6	psi	ISO 527-1
Tensile Stress (Break)	23200	psi	ISO 527-2/5
Tensile Strain (Break)	1.6	%	ISO 527-2/5
Flexural Modulus	2.18E+6	psi	ISO 178
Flexural Stress	31900	psi	ISO 178
Flexural Strain - at failure	2.2	%	ISO 178
Compressive Modulus	2.03E+6	psi	ISO 604
Compressive Stress (1% Strain)	13500	psi	ISO 604
Poisson's Ratio ²	0.33		
Impact	Nominal Value	Unit	Test Method
Charpy Notched Impact Strength (73°F)	18	ft·lb/in²	ISO 179/1eA
Charpy Unnotched Impact Strength (73°F)	20	ft·lb/in²	ISO 179/1eU
Notched Izod Impact Strength (73°F)	13	ft·lb/in²	ISO 180/1A
Unnotched Izod Impact Strength (73°F)	15	ft·lb/in²	ISO 180/1U
Hardness	Nominal Value	Unit	Test Method
Rockwell Hardness (M-Scale)	71		ISO 2039-2

UL LLC ©2025. All rights reserved.

The information presented here was acquired by UL from the producer of the product or material or original information provider. However, UL assumes no responsibility or liability for the accuracy of the information contained on this website and strongly encourages that upon final product or material selection information is validated with the manufacturer. This website provides links to other websites owned by third parties. The content of such third party sites is not within our control, and we cannot and will not take responsibility for the information or content.

Vectra® E130i Celanese Corporation - Liquid Crystal Polymer

Thermal	Nominal Value	Unit	Test Method
Deflection Temperature Under Load			ISO 75-2/A
264 psi, Unannealed	518	°F	
Deflection Temperature Under Load			ISO 75-2/C
1160 psi, Unannealed	421	°F	
Vicat Softening Temperature	383	°F	ISO 306/B50
Melting Temperature ³	635	°F	ISO 11357-3
CLTE - Flow	3.9E-6	in/in/°F	ISO 11359-2
CLTE - Transverse	1.1E-5	in/in/°F	ISO 11359-2
Thermal Conductivity ⁴	2.4	Btu∙in/hr/ft²/°F	ISO 22007-2
Specific Heat Capacity ⁵	0.433	Btu/lb/°F	
Electrical	Nominal Value	Unit	Test Method
Surface Resistivity	1.0E+14	ohms	IEC 62631-3-2
Volume Resistivity	1.0E+13	ohms∙m	IEC 62631-3-1
Electric Strength	810	V/mil	IEC 60243-1
Relative Permittivity			IEC 61189-2-721
2.50 GHz ⁶	3.90		
0.0197 in, 10.0 GHz ⁷	3.80		
Relative Permittivity			IEC 62631-2-1
100 Hz	4.00		
1 kHz ⁵	4.30		
1 MHz ⁵	3.90		
Dissipation Factor			IEC 61189-2-721
2.50 GHz ⁶	6.0E-3		
0.0197 in, 10.0 GHz ⁷	5.2E-3		
Dissipation Factor			IEC 62631-2-1
100 Hz	0.010		
1 kHz	0.0		
1 MHz ⁵	0.036		
1.00 GHz	6.0E-3		
Arc Resistance	140	sec	UL 746B
Comparative Tracking Index	175	V	IEC 60112
Flammability	Nominal Value	Unit	Test Method
Flammability Classification	V-0		IEC 60695-11-10, -20
Oxygen Index	45	%	ISO 4589-2
Fill Analysis	Nominal Value	Unit	
Ejection Temperature	491	°F	

Processing Information			
Injection	Nominal Value	Unit	
Drying Temperature	302	°F	
Drying Time - Desiccant Dryer	4.0 to 6.0	hr	
Suggested Max Moisture	< 0.010	%	
Processing (Melt) Temp	635 to 689	°F	
Melt Temperature, Optimum	662	°F	
Mold Temperature	176 to 248	°F	
Mold Temperature, Optimum	203	°F	
Back Pressure	435	psi	
Drying Recommended	yes		

UL LLC ©2025. All rights reserved.

The information presented here was acquired by UL from the producer of the product or material or original information provider. However, UL assumes no responsibility or liability for the accuracy of the information contained on this website and strongly encourages that upon final product or material selection information is validated with the manufacturer. This website provides links to other websites owned by third parties. The content of such third party sites is not within our control, and we cannot and will not take responsibility for the information or content.

Injection

Screw Tangential Speed

Notes

¹ Typical properties: these are not to be construed as specifications.

² Calculated

³ 10°C/min

⁴ Flow; One time tested

⁵ One time tested

⁶ One time tested; Shifted data from 1.9GHz to 2.0GHz for harmonization purpose, only use whole numbers.

⁷ SR00077966, Vectra E130i VF3001 Natural sample

UL LLC ©2025. All rights reserved.

The information presented here was acquired by UL from the producer of the product or material or original information provider. However, UL assumes no responsibility or liability for the accuracy of the information contained on this website and strongly encourages that upon final product or material selection information is validated with the manufacturer. This website provides links to other websites owned by third parties. The content of such third party sites is not within our control, and we cannot and will not take responsibility for the information or content.

Nominal Value Unit

425 to 472 in/min